How phylogenetic inference can shape our view of heterochrony: examples from thecideide brachiopods

Paleobiology ◽  
2001 ◽  
Vol 27 (2) ◽  
pp. 205-225 ◽  
Author(s):  
Glenn. S. Jaecks ◽  
Sandra. J. Carlson

Heterochrony is considered to be an important and ubiquitous mechanism of evolutionary change. Three components are necessary to describe heterochrony: phylogenetic relationships, size and shape change, and timing of developmental events. Patterns and processes of heterochrony are all too often invoked before all three components have been investigated. Phylogenetic hypotheses affect the interpretation of heterochrony in three ways: rooting of a clade, topology of a clade, and character polarity. To study these effects we examined the distribution of shell microstructure, lophophore support structures, and body size in four different phylogenetic hypotheses of thecideide brachiopods (Triassic to Recent), a group of minute, cryptic, benthic marine invertebrates.Thecideides are consistently monophyletic in experiments using terebratulide, strophomenate, and spire-bearing outgroups together and separately, varying ingroup membership, and experimentally withholding certain character complexes. Thecideide monophyly is also supported by bootstrap analysis. Hypotheses of heterochrony in thecideide origins and evolution are therefore not merely artifacts of classification and can be pursued further. Using either strophomenate or spire-bearing outgroups, Triassic Thecospira is the most primitive thecideide. Trees constructed using terebratulide outgroups are rooted instead at Eudesella, a taxon derived in every other phylogenetic reconstruction, and the Triassic thecideides occupy derived rather than primitive positions.Our phylogenetic results support the traditional interpretation of the reduction or loss of the secondary fibrous shell layer as a paedomorphic pattern, whereas the evolution of lophophore support structures suggests a peramorphic pattern. Reduction in thecideide adult body size is gradual, phylogenetically, and results in an overall paedomorphic pattern. Heterochrony in these three character suites may play a role in the subsequent evolution of the clade, but apparently not in the origin of the clade, as is commonly thought. Heterotopy, rather than—or in addition to—heterochrony, may account for both the origin and evolution of the lophophore support structures and in the reduction and loss of the secondary shell layer. These phylogenetic hypotheses suggest that heterochrony can result from a complex mosaic of processes and provide specific, testable predictions about the processes responsible for producing the patterns, whether heterochronic or not. Categorizing an entire clade (such as thecideides), rather than individual characters, as globally paedomorphic may allow interesting peramorphic patterns in individual characters to be overlooked.

2019 ◽  
Vol 11 (7) ◽  
pp. 1797-1812 ◽  
Author(s):  
Dong Zhang ◽  
Hong Zou ◽  
Cong-Jie Hua ◽  
Wen-Xiang Li ◽  
Shahid Mahboob ◽  
...  

Abstract The phylogeny of Isopoda, a speciose order of crustaceans, remains unresolved, with different data sets (morphological, nuclear, mitochondrial) often producing starkly incongruent phylogenetic hypotheses. We hypothesized that extreme diversity in their life histories might be causing compositional heterogeneity/heterotachy in their mitochondrial genomes, and compromising the phylogenetic reconstruction. We tested the effects of different data sets (mitochondrial, nuclear, nucleotides, amino acids, concatenated genes, individual genes, gene orders), phylogenetic algorithms (assuming data homogeneity, heterogeneity, and heterotachy), and partitioning; and found that almost all of them produced unique topologies. As we also found that mitogenomes of Asellota and two Cymothoida families (Cymothoidae and Corallanidae) possess inversed base (GC) skew patterns in comparison to other isopods, we concluded that inverted skews cause long-branch attraction phylogenetic artifacts between these taxa. These asymmetrical skews are most likely driven by multiple independent inversions of origin of replication (i.e., nonadaptive mutational pressures). Although the PhyloBayes CAT-GTR algorithm managed to attenuate some of these artifacts (and outperform partitioning), mitochondrial data have limited applicability for reconstructing the phylogeny of Isopoda. Regardless of this, our analyses allowed us to propose solutions to some unresolved phylogenetic debates, and support Asellota are the most likely candidate for the basal isopod branch. As our findings show that architectural rearrangements might produce major compositional biases even on relatively short evolutionary timescales, the implications are that proving the suitability of data via composition skew analyses should be a prerequisite for every study that aims to use mitochondrial data for phylogenetic reconstruction, even among closely related taxa.


Genome ◽  
2005 ◽  
Vol 48 (2) ◽  
pp. 247-256 ◽  
Author(s):  
A Martínez-Lage ◽  
F Rodríguez-Fariña ◽  
A González-Tizón ◽  
J Méndez

A phylogenetic reconstruction based on the amplification of 3 satellite DNAs (stDNAs) was carried out in 1 crustacean species and 15 bivalve species of the subclass Pteriomorphia (10, subfamily Mytilinae; 1, subfamily Litophaginae; 1, subfamily Modiolinae, all belonging to family Mytilidae; 1, family Arcidae; and 2, family Pectinidae). The sequences obtained showed motifs with high similarity to those of A and B boxes of tRNA promoter regions. Dot-blot hybridizations revealed that the 3 stDNAs are present mainly in high copy numbers for each species of the genus Mytilus, whereas for the other species they appear in low copy numbers. Maximum-parsimony trees evidenced a tendency to group Mytilus clones together, and species containing these sequences as a single copy were distributed among the different mytilids. Finally, the possible origin and evolution of these stDNAs is discussed.Key words: bivalves, Pteriomorphia, satellite DNA, phylogeny, dot-blot.


2004 ◽  
Vol 175 (5) ◽  
pp. 507-512 ◽  
Author(s):  
Isabelle Rouget ◽  
Pascal Neigeet ◽  
Jean-Louis Dommergues

Abstract Two main types of data are available to resolve phylogenies using fossils data: (1) stratigraphic ordering of taxa, and (2) morphological characters. In most phylogenetic studies dealing with ammonites, authors have given priority to the stratigraphic distribution of taxa. This practice is classically justified by the fact that the ammonite fossil record is frequently outstandingly good. In practice, the level of integration of stratigraphic and morphologic information in a single analysis depends on the confidence that authors have in the quality of data. Besides, many evolutionary concepts, which could differ over time and between authors (e.g. anagenesis, cladogenesis, iterative evolution), are added to these data to help infer phylogenetic relationships. As a result, phylogenetic hypotheses are based on eclectic methods which depend on the relative weight given to stratigraphic and morphologic information as well as on evolutionary concepts used. The validity of relationships proposed by previous authors is not dealt with in this paper. Instead, our goal is to draw attention to problems that these eclectic methods may cause, that is to say: (1) ammonites systematics is poorly formalised and (2) phylogenetic hypotheses as they are classically constructed are not rigorously testable. During the last 10 years, cladistic analysis has been applied to ammonites but is still unpopular among ammonitologists. However, studies have consistently shown that cladistics is not as unsuited a tool for ammonites phylogenetic reconstruction as is widely believed. Moreover, classical works open new questions about ammonite phylogeny and in particular, help to reappraise our view on the definition of morphological characters and their phylogenetic significance.


2020 ◽  
Vol 40 (3) ◽  
pp. 325-329
Author(s):  
Joshua T Fields ◽  
Hayden K Mullen ◽  
Clayr M Kroenke ◽  
Kyla A Salomon ◽  
Abby J Craft ◽  
...  

Abstract The spider crab Petramithrax pygmaeus (Bell, 1836), a phyletic dwarf, was used to test predictions regarding reproductive performance in small marine invertebrates. Considering the disproportional increase in brooding costs and the allometry of egg production with increasing body size, it was expected that this minute-size species would produce large broods compared to closely related species that attain much larger body sizes. Fecundity in P. pygmaeus females carrying early and late eggs varied, respectively, between 17 and 172 eggs crab–1 (mean ± SD = 87.97 ± 48.39) and between 13 and 159 eggs crab–1 (55.04 ± 40.29). Females did not experience brood loss during egg development. Egg volume in females carrying early and late eggs varied, respectively, between 0.13 and 0.40 mm3 (0.22 ± 0.07) and between 0.15 and 0.42 mm3 (0.26 ± 0.06 mm3). Reproductive output (RO) varied between 0.91 and 8.73% (3.81 ± 2.17%) of female dry body weight. The RO of P. pygmaeus was lower than that reported for closely related species with larger body sizes. The slope (b = 0.95 ± 0.15) of the line describing the relationship between brood and parental female dry weight was not statistically significant from unity. Overall, our results disagree with the notion that the allometry of gamete production and increased physiological costs with increased brood size explain the association between brooding and small body size in marine invertebrates. Comparative studies on the reproductive investment of brooding species belonging to monophyletic clades with extensive differences in body size are warranted to further our understanding about disparity in egg production in brooding marine invertebrates.


2019 ◽  
Vol 67 (S5) ◽  
pp. S101-S109
Author(s):  
Itzahí Silva-Morales ◽  
Mónica J. López-Aquino ◽  
Valentina Islas-Villanueva ◽  
Fernando Ruiz-Escobar ◽  
J. Rolando Bastida-Zavala

Introduction: The sipunculans are a group of marine invertebrates that have been little studied in the tropical eastern Pacific (TEP). Antillesoma antillarum is a species belonging to the monospecific family Antillesomatidae, considered widely distributed in tropical and subtropical localities across the globe. Objective: The main objective of this work was to examine the morphological and molecular differences between specimens from both coasts of tropical America to clarify the taxonomy of this species. Methods: We examined the morphology with material from the Mexican Caribbean and southern Mexican Pacific. To perform molecular analyses, two sequences of the COI molecular marker were obtained from specimens collected in Panteón Beach, Oaxaca, southern Mexican Pacific, and compared with four sequences identified as A. antillarum in GenBank, all of them from different localities. A phylogenetic reconstruction was performed with the maximum likelihood method and genetic distances were calculated with the Kimura 2P model and compared to reference values. Results: The phylogenetic analysis revealed three different lineages of Antillesoma that are well supported by bootstrap values: Antillesoma antillarum sensu stricto from the Caribbean Sea and Florida; a sister group to the one represented by our samples from the Mexican Pacific; and a third group from Thailand. Conclusion: Based on morphological traits and molecular data, Antillesoma mexicanum sp. nov. is described from the Mexican Pacific, differing from A. antillarum in the trunk papillae, color patterns and, additionally, the specimens from the Caribbean attain significantly bigger trunk sizes than the ones Pacific.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246651
Author(s):  
Lizeth Soto-Avila ◽  
Ricardo Ciria Merce ◽  
Walter Santos ◽  
Nori Castañeda ◽  
Rosa-María Gutierrez-Ríos

Engulfment requires the coordinated, targeted synthesis and degradation of peptidoglycan at the leading edge of the engulfing membrane to allow the mother cell to completely engulf the forespore. Proteins such as the DMP and Q:AH complexes in Bacillus subtilis are essential for engulfment, as are a set of accessory proteins including GerM and SpoIIB, among others. Experimental and bioinformatic studies of these proteins in bacteria distinct from Bacillus subtilis indicate that fundamental differences exist regarding the organization and mechanisms used to successfully perform engulfment. As a consequence, the distribution and prevalence of the proteins involved in engulfment and other proteins that participate in different sporulation stages have been studied using bioinformatic approaches. These works are based on the prediction of orthologs in the genomes of representative Firmicutes and have been helpful in tracing hypotheses about the origin and evolution of sporulation genes, some of which have been postulated as sporulation signatures. To date, an extensive study of these signatures outside of the representative Firmicutes is not available. Here, we asked whether phyletic profiles of proteins involved in engulfment can be used as signatures able to describe the sporulation phenotype. We tested this hypothesis in a set of 954 Firmicutes, finding preserved phyletic profiles defining signatures at the genus level. Finally, a phylogenetic reconstruction based on non-redundant phyletic profiles at the family level shows the non-monophyletic origin of these proteins due to gain/loss events along the phylum Firmicutes.


Author(s):  
Luna L. Sanchez Reyes ◽  
Martha Kandziora ◽  
Emily Jane McTavish

AbstractPhylogenies are a key part of research in many areas of biology. Tools that automate some parts of the process of phylogenetic reconstruction, mainly molecular character matrix assembly, have been developed for the advantage of both specialists in the field of phylogenetics and nonspecialists. However, interpretation of results, comparison with previously available phylogenetic hypotheses, and selection of one phylogeny for downstream analyses and discussion still impose difficulties to one that is not a specialist either on phylogenetic methods or on a particular group of study.Physcraper is a command-line Python program that automates the update of published phylogenies by adding public DNA sequences to underlying alignments of previously published phylogenies. It also provides a framework for straightforward comparison of published phylogenies with their updated versions, by leveraging upon tools from the Open Tree of Life project to link taxonomic information across databases.Physcraper can be used by the nonspecialist, as a tool to generate phylogenetic hypotheses based on publicly available expert phylogenetic knowledge. Phylogeneticists and taxonomic group specialists will find it useful as a tool to facilitate molecular dataset gathering and comparison of alternative phylogenetic hypotheses (topologies).The Physcraper workflow demonstrates the benefits of doing open science for phylogenetics, encour-aging researchers to strive for better sharing practices. Physcraper can be used with any OS and is released under an open-source license. Detailed instructions for installation and use are available at https://physcraper.readthedocs.


Author(s):  
Simon E. Dalley ◽  
Glenda G. Bron ◽  
Iona F. A. Hagl ◽  
Frederic Heseding ◽  
Sabine Hoppe ◽  
...  

Abstract Purpose This study set out to disentangle the roles of body size, body shame and negative urgency on bulimic symptomatology in a sample of college women. We predicted that body shame would mediate the relationship between body size and bulimic symptomatology: with increasing body size, the greater would be the experience of body shame and, in turn, the greater the bulimic symptomatology. We also predicted that negative urgency would exacerbate this mediation pathway, and that the moderated mediation model would occur over and above current levels of depression. Method A convenience sample of 237 college women indicated their age, height and weight and then completed measures of body shame, negative urgency, depression and bulimic symptomatology. Bootstrap analysis was used to test the predicted moderation mediation model. Results The bootstrap analysis supported all predictions. Thus, with greater the increase in body size, the greater was the body shame and the more frequent bulimic symptomatology. Furthermore, negative urgency moderated the relationship between body shame and bulimic symptomatology, such that those with both higher negative urgency and body shame had more frequent bulimic symptomatology. Conclusions Results suggest that those college women higher in both BMI and negative urgency are likely to experience higher levels of bulimic symptoms. These women may benefit from emotion regulation interventions targeted at preventing, as well as coping effectively with, the experience of body shame. Level of evidence V: cross-sectional descriptive study.


2008 ◽  
Vol 56 (4) ◽  
pp. 257 ◽  
Author(s):  
J. I. Menzies ◽  
S. J. Richards ◽  
M. J. Tyler

We examined differences in morphology and advertisement calls of a large sample of frogs from the Australo-Papuan Region that resemble Litoria bicolor, and compared them with examples of that species from Australia. Consistent differences in body size, body proportions, and advertisement call structure among populations demonstrate that at least seven distinct species occur in the Australo-Papuan region, and that only the population represented by the holotype from the Northern Territory of Australia is Litoria bicolor s.s. Herein we describe four new species from the Papuan Region and comment on the origin and evolution of the Papuan members of the Litoria bicolor complex in the region.


Sign in / Sign up

Export Citation Format

Share Document